Natural Resources
-

This event will offer simultaneous translation between Japanese and English. 
当イベントは日本語と英語の同時通訳がついています。

This is a virtual event. Please click here to register and generate a link to the talk. 
The link will be unique to you; please save it and do not share with others.
当イベントはZoomウェビナーで行われます。ウェビナーに参加するためには、こちらのリンクをクリックし、事前登録をして下さい。

March 1, 5-6:30 p.m. California time/ March 2, 10-11:30 a.m. Japan time

This event is part of the 2022 Japan Program Winter webinar series, The Future of Social Tech: U.S.-Japan Partnership in Advancing Technology and Innovation with Social Impact

 

The challenges of climate change require solutions on multiple fronts, one of which is technological innovation. Attempts for innovation for new energy sources have been ongoing in many parts of the world, and Japan has produced a number of new technologies. This session will focus on two of the most promising innovations coming out of Japan, biofuel and hydrogen energy, and assess their promises and challenges, highlighting technological, regulatory, and business aspects of developing new technologies. Where do these technologies fit in the energy portfolio that would address the issues of climate change and what can Japan and the United States do to collaboratively solve the key problems in advancing these technologies further? Three leading experts in the field will discuss these questions that would shape the future of climate change. 

 

Panelists

Image
Headshot photo of Mitsuru Izumo
Mitsuru Izumo is a graduate of the University of Tokyo, having specialised in agricultural structural
management. In 2005, he established Euglena Co., Ltd. to harness the properties of microalgae
Euglena. Euglena Co., Ltd. became the world’s first biotechnology company that succeeded in the
outdoor mass cultivation of Euglena. Currently, Euglena Co., Ltd upholds “Sustainability First” as
their philosophy and has developed the manufacture and sale of foods and cosmetics as the
healthcare domain, the biofuel business, the bioinformatics business, and the social business in
Bangladesh by leveraging Euglena and other advanced technologies.

 

 

Image
Headshot photo of Eiji Ohira
Eiji Ohira is the Director General of the New Energy and Industrial Technology Development Organization (NEDO)’s Fuel Cell and Hydrogen Technology Office In this capacity, he is responsible for the overall strategy, execution and coordination of NEDO’s research, development and demonstration project on fuel cell and hydrogen.

He has also coordinated fuel cell and hydrogen activities with international stakeholders, through International Energy Agency’s Technology Collaboration Program (IEA TCP: Advanced Fuel Cell & Hydrogen), and International Partnership for Hydrogen and Fuel Cells in the Economy (IPHE). 

He joined the NEDO in 1992, just after graduation from the Tokyo University of Science. He served as a visiting scholar at the Massachusetts Institute of Technology in 1997-1998.

 

Moderator

Image
Headshot photo of Kate Hardin
Kate Hardin, Deloitte Executive Director for Energy and Industrials Research, has worked in the energy industry for 25 years.  She currently leads Deloitte research on the impact of the energy transition on the energy and industrial manufacturing sectors. Before that, Kate led integrated coverage of transportation decarbonization and the implications for the oil, gas, and power sectors.  Kate has also developed global energy research for institutional investors and has led analysis of Russian and European energy developments.  Kate recently served as an expert in residence at Yale’s Center for Business and Environment, and she is also a member of the Council on Foreign Relations.  





 

Image
Shorenstein APARC Winter 2022 Speaker Series Icon with text "New Frontiers: Technology, Politics, and Society in the Asia-Pacific"
This event is part of the 2022 Winter webinar series, New Frontiers: Technology, Politics, and Society in the Asia-Pacific, sponsored by the Walter H. Shorenstein Asia-Pacific Research Center.

Via Zoom Webinar
Register:  https://bit.ly/3LuNa94

 

 

Mitsuru Izumo <br>Founder and President, Euglena Co Ltd.<br><br>
Eiji Ohira <br>Director General of Fuel Cell and Hydrogen Technology Office, Japan New Energy and Industrial Technology Development Organization (NEDO) <br><br>
Kate Hardin <br>Executive Director, Deloitte Research Center for Energy & Industrials
Panel Discussions
Paragraphs

Methane emitted and flared from industrial sources across the United States is a major contributor to global climate change. Methanotrophic bacteria can transform this methane into useful protein-rich biomass, already approved for inclusion into animal feed. In the rapidly growing aquaculture industry, methanotrophic additives have a favourable amino acid profile and can offset ocean-caught fishmeal, reducing demands on over-harvested fisheries. Here we analyse the economic potential of producing methanotrophic microbial protein from stranded methane produced at wastewater treatment plants, landfills, and oil and gas facilities. Our results show that current technology can enable production, in the United States alone, equivalent to 14% of the global fishmeal market at prices at or below the current cost of fishmeal (roughly US$1,600 per metric ton). A sensitivity analysis highlights technically and economically feasible cost reductions (such as reduced cooling or labour requirements), which could allow stranded methane from the United States alone to satisfy global fishmeal demand.

All Publications button
1
Publication Type
Journal Articles
Publication Date
Subtitle

Stanford researchers reveal how to turn a global warming liability into a profitable food security solution

Journal Publisher
Nature Sustainability
Authors
Sahar H. El Abbadi
Evan D. Sherwin
Adam R. Brandt
Stephen P. Luby
Craig S. Criddle
Number
47–56 (2022)
Paragraphs

Accurate automated segmentation of remote sensing data could benefit applications from land cover mapping and agricultural monitoring to urban development surveyal and disaster damage assessment. While convolutional neural networks (CNNs) achieve state-of-the-art accuracy when segmenting natural images with huge labeled datasets, their successful translation to remote sensing tasks has been limited by low quantities of ground truth labels, especially fully segmented ones, in the remote sensing domain. In this work, we perform cropland segmentation using two types of labels commonly found in remote sensing datasets that can be considered sources of “weak supervision”: (1) labels comprised of single geotagged points and (2) image-level labels. We demonstrate that (1) a U-Net trained on a single labeled pixel per image and (2) a U-Net image classifier transferred to segmentation can outperform pixel-level algorithms such as logistic regression, support vector machine, and random forest. While the high performance of neural networks is well-established for large datasets, our experiments indicate that U-Nets trained on weak labels outperform baseline methods with as few as 100 labels. Neural networks, therefore, can combine superior classification performance with efficient label usage, and allow pixel-level labels to be obtained from image labels.

All Publications button
1
Publication Type
Journal Articles
Publication Date
Journal Publisher
Remote Sensing MDPI
Authors
Sherrie Wang
George Azzari
David Lobell
Authors
News Type
News
Date
Paragraphs

By monitoring crops through machine learning and satellite data, Stanford scientists have found farms that till the soil less can increase yields of corn and soybeans and improve the health of the soil – a win-win for meeting growing food needs worldwide.

Agriculture degrades over 24 million acres of fertile soil every year, raising concerns about meeting the rising global demand for food. But a simple farming practice born from the 1930’s Dust Bowl could provide a solution, according to new Stanford research. The study, published Dec. 6 in Environmental Research Letters, shows that Midwest farmers who reduced how much they overturned the soil – known as tilling – increased corn and soybean yields while also nurturing healthier soils and lowering production costs.

“Reduced tillage is a win-win for agriculture across the Corn Belt,” said study lead author Jillian Deines, a postdoctoral scholar at Stanford’s Center on Food Security and the Environment. “Worries that it can hurt crop yields have prevented some farmers from switching practices, but we found it typically leads to increased yields.”

The U.S. – the largest producer of corn and soybeans worldwide – grows a majority of these two crops in the Midwest. Farmers plucked about 367 million metric tons of corn and 108 million metric tons of soybeans from American soil this past growing season, providing key food, oil, feedstock, ethanol and export value.

Monitoring farming from space


Farmers generally till the soil prior to planting corn or soybeans – a practice known to control weeds, mix nutrients, break up compacted dirt and ultimately increase food production over the short term. However, over time this method degrades soil. A 2015 report from the Food and Agriculture Organization of the United Nations found that in the past 40 years the world has lost a third of food-producing land to diminished soil. The demise of once fertile land poses a serious challenge for food production, especially with mounting pressures on agriculture to feed a growing global population.

In contrast, reduced tillage – also known as conservation tillage – promotes healthier soil management, reduces erosion and runoff and improves water retention and drainage. It involves leaving the previous year’s crop residue (such as corn stalks) on the ground when planting the next crop, with little or no mechanical tillage. The practice is used globally on over 370 million acres, mostly in South America, Oceania and North America. However, many farmers fear the method could reduce yields and profits. Past studies of yield effects have been limited to local experiments, often at research stations, that don’t fully reflect production-scale practices.

The Stanford team turned to machine learning and satellite datasets to address this knowledge gap. First, they identified areas of reduced and conventional tilling from previously published data outlining annual U.S. practices for 2005 to 2016. Using satellite-based crop yield models – which take into account variables such as climate and crop life-cycles – they also reviewed corn and soybean yields during this time. To quantify the impact of reduced tillage on crop yields, the researchers trained a comput

(Image credit: Jillian Deines) Average impacts on corn yields from conservation tillage across the U.S. Corn Belt from 2008 to 2017. Red colors indicate increased yields under conservation tillage, blue colors indicate yield declines.
er model to compare changes in yields based on tillage practice. They also recorded elements such as soil type and weather to help determine which conditions had a larger influence on harvests.

Improved yields


The researchers calculated corn yields improved an average of 3.3 percent and soybeans by 0.74 percent across fields managed with long-term conservation tillage practices in the nine states sampled. Yields from the additional tonnage rank in the top 15 worldwide for both crops. For corn, this totals approximately 11 million additional metric tons matching the 2018 country output of South Africa, Indonesia, Russia or Nigeria. For soybeans, the added 800,000 metric tons ranks in between Indonesia and South Africa’s country totals.

Some areas experienced up to an 8.1 percent increase for corn and 5.8 percent for soybeans. In other fields, negative yields of 1.3 percent for corn and 4.7 for soybeans occurred. Water within the soil and seasonal temperatures were the most influential factors in yield differences, especially in drier, warmer regions. Wet conditions were also found favorable to crops except during the early season where water-logged soils benefit from conventional tillage that in turn dries and aerates.

“Figuring out when and where reduced tillage works best could help maximize the benefits of the technology and guide farmers into the future,” said study senior author David Lobell, a professor of Earth system science in the School of Earth, Energy & Environmental Sciences and the Gloria and Richard Kushel Director of the Center on Food Security and the Environment.

It takes time to see the benefits from reduced tillage, as it works best under continuous implementation. According to the researchers’ calculations, corn farmers won’t see the full benefits for the first 11 years, and soybeans take twice as long for full yields to materialize. However, the approach also results in lower costs due to reduced need for labor, fuel and farming equipment while also sustaining fertile lands for continuous food production. The study does show a small positive gain even during the first year of implementation, with higher gains accruing over time as soil health improves. According to a 2017 Agricultural Censuses report, farmers appear to be getting on board with the long-term investment and close to 35 percent of cropland in the U.S. is now managed with reduced tillage.

“One of the big challenges in agriculture is achieving the best crop yields today without comprising future production. This research demonstrates that reduced tillage can be a solution for long-term crop productivity,” Deines said.


To read all stories about Stanford science, subscribe to the biweekly Stanford Science Digest.

David Lobell is also the William Wrigley Senior Fellow at the Stanford Woods Institute for the Environment, a senior fellow at the Freeman Spogli Institute for International Studies and the Stanford Institute for Economic Policy and Research. Graduate student Sherrie Wang is also a co-author. Research was funded by NASA Harvest.

 
All News button
1
Paragraphs

Accurate prediction of crop yields in developing countries in advance of harvest time is central to preventing famine, improving food security, and sustainable development of agriculture. Existing techniques are expensive and difficult to scale as they require locally collected survey data. Approaches utilizing remotely sensed data, such as satellite imagery, potentially provide a cheap, equally effective alternative. Our work shows promising results in predicting soybean crop yields in Argentina using deep learning techniques. We also achieve satisfactory results with a transfer learning approach to predict Brazil soybean harvests with a smaller amount of data. The motivation for transfer learning is that the success of deep learning models is largely dependent on abundant ground truth training data. Successful crop yield prediction with deep learning in regions with little training data relies on the ability to fine-tune pre-trained models.

All Publications button
1
Publication Type
Working Papers
Publication Date
Journal Publisher
COMPASS '18 Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable Societies
Authors
Anna Wang
Caelin Tran
Nikhil Desai
David Lobell
Stefano Ermon
Authors
Nicole Kravec, Stanford Center for Ocean Solutions
News Type
News
Date
Paragraphs
Stanford’s Center for Ocean Solutions and Center on Food Security and the Environment, together with Springer-Nature, are hosting a workshop focused on building a research agenda that, for the first time, analyzes the role of oceans within the context of global food systems.
 
Massive changes in the global food sector over the next few decades – driven by climate change and other environmental stresses, growing population and income, advances in technology, and shifts in policies and trade patterns – will have profound implications for the oceans and vice versa. While there is a large community of researchers addressing challenges in food policy and agriculture and a similar community in oceans and fisheries, there is very little interaction between them. This workshop addresses a pressing need to foster more interaction among these communities, to build a research agenda that illuminates the many interconnections among food and the oceans, and to inform action to meet these challenges.
 
“Stanford is in a perfect position to take the lead in developing this new area of research and outreach, with its strong expertise in terrestrial food systems, global food security, and the oceans,” claims Roz Naylor, Professor of Earth System Science, founding Director of the Center on Food Security and the Environment, and co-organizer of the workshop.
 
This event brings together diverse leaders across academia, business, policy, and government. Together participants will analyze the role of the oceans within a global food systems context, highlighting issues related to food security, equity, poverty alleviation, marine ecosystems, and environmental change. The aim is to define and develop this emerging field, as researchers and stakeholders explore cutting edge ideas and identify emerging trends and challenges that can inform ongoing policy discussions.
 

“This is a unique opportunity to build a new and vibrant community, bringing together leading researchers in oceans, fisheries, food, and agriculture from around the world," explained COS co-director Jim Leape. "We're coming together to ask the key questions needed to identify emerging themes and solutions, in lockstep with those who will put these findings into practice," added COS co-director Fiorenza Micheli. "As the world's demand for food continues to grow, we will increasingly need to understand and act on the critical role of the oceans to meet these challenges."

Jim Leape is also the William and Eva Price Fellow at the Stanford Woods Institute for the Environment. Fiorenza Micheli is also the David and Lucile Packard Professor in Marine Sciences at Stanford's Hopkins Marine Station and senior fellow at the Woods Institute. Read more about the Stanford Center for Ocean Solutions.

 

All News button
1
Paragraphs

Our Report draws attention to a complex but understudied issue: How will climate warming alter losses of major food crops to insect pests? Because empirical evidence on plant-insect-climate interactions is scarce and geographically localized, we developed a physiologically based model that incorporates strong and well-established effects of temperature on metabolic rates and on population growth rates. We acknowledged that other factors are involved, but the ones we analyzed are general, robust, and global (13).

Parmesan and colleagues argue that our model is overly simplistic and that any general model is premature. They are concerned that our model does not incorporate admittedly idiosyncratic and geographically localized aspects of plant-insect interactions. Some local effects, such as evidence that warmer winters will harm some insects but not others, were in fact evaluated in our sensitivity analyses and shown to be minor (see the Report's Supplementary Materials). Other phenomena, such as plant defenses that benefit some insects and threaten others, are relevant but are neither global nor directional. Furthermore, because Parmesan et al. present no evidence that such idiosyncratic and localized interactions will outweigh the cardinal and universally strong impacts of temperature on populations and on metabolic rates (13), their conclusion is subjective.

We agree with Parmesan and colleagues that the question of future crop losses is important and needs further study, that targeted experimental data are needed (as we wrote in our Report), and that our estimates are likely to be conservative (as we concluded, but for reasons different from theirs). However, we strongly disagree with their recommendation to give research priority to gathering localized experimental data. That strategy will only induce a substantial time lag before future crop losses can be addressed.

We draw a lesson from models projecting future climates. Those models lack the “complexity and idiosyncratic nature” of many climate processes, but by building from a few robust principles, they successfully capture the essence of climate patterns and trends (4). Similarly, we hold that the most expeditious and effective way to anticipate crop losses is to develop well-evidenced ecological models and use them to help guide targeted experimental approaches, which can subsequently guide revised ecological models. Experiments and models should be complementary, not sequential.

 
All Publications button
1
Publication Type
Journal Articles
Publication Date
Journal Publisher
Science
Authors
Curtis A. Deutsch, Joshua J. Tewksbury, Michelle Tigchelaar, David S. Battisti, Scott C. Merrill, Raymond B. Huey
Rosamond L. Naylor
Paragraphs

Reconciling higher freshwater demands with finite freshwater resources remains one of the great policy dilemmas. Given that crop irrigation constitutes 70% of global water extractions, which contributes up to 40% of globally available calories (1), governments often support increases in irrigation efficiency (IE), promoting advanced technologies to improve the “crop per drop.” This provides private benefits to irrigators and is justified, in part, on the premise that increases in IE “save” water for reallocation to other sectors, including cities and the environment. Yet substantial scientific evidence (2) has long shown that increased IE rarely delivers the presumed public-good benefits of increased water availability. Decision-makers typically have not known or understood the importance of basin-scale water accounting or of the behavioral responses of irrigators to subsidies to increase IE. We show that to mitigate global water scarcity, increases in IE must be accompanied by robust water accounting and measurements, a cap on extractions, an assessment of uncertainties, the valuation of trade-offs, and a better understanding of the incentives and behavior of irrigators.

 
All Publications button
1
Publication Type
Journal Articles
Publication Date
Journal Publisher
Science
Authors
Quentin Grafton
J. Williams, C. J. Perry, F. Molle, C. Ringler, P. Steduto, B. Udall, S. A. Wheeler, Y. Wang, D. Garrick, R. G. Allen
Paragraphs

Low-intensity tillage has become more popular among farmers in the United States and many other regions. However, accurate data on when and where low-intensity tillage methods are being used remain scarce, and this scarcity impedes understanding of the factors affecting the adoption and the agronomic or environmental impacts of these practices. In this study, we used composites of satellite imagery from Landsat 5, 7, and 8, and Sentinel-1 in combination with producer data from about 5900 georeferenced fields to train a random forest classifier and generate annual large-scale maps of tillage intensity from 2005 to 2016. We tested different combinations of hyper-parameters using cross-validation, splitting the training and testing data alternatively by field, year, and state to assess the influence of clustering on validation results and evaluate the generalizability of the classification model. We found that the best model was able to map tillage practices across the entire North Central US region at 30 m-resolution with accuracies spanning between 75% and 79%, depending on the validation approach. We also found that although Sentinel-1 provides an independent measure that should be sensitive to surface moisture and roughness, it currently adds relatively little to classification performance beyond what is possible with Landsat. When aggregated to the state level, the satellite estimates of percentage low- and high-intensity tillage agreed well with a USDA survey on tillage practices in 2006 (R2 = 0.55). The satellite data also revealed clear increases in low-intensity tillage area for most counties in the past decade. Overall, the ability to accurately map spatial and temporal patterns in tillage should facilitate further study of this important practice in the United States, as well as other regions with fewer survey-based estimates.

All Publications button
1
Publication Type
Journal Articles
Publication Date
Journal Publisher
Remote Sensing of Environment
Authors
George Azzari
Patricio Grassini, Juan Ignaci, Rattalino Edreira, Shawn Conley, Spyridon Mourtzinis
David Lobell

Braun Hall, Stanford University, Stanford, CA 94305

0
gorelick_0.jpg

Professor Gorelick runs the Hydrogeology and Water Resources program and directs the interdisciplinary Global Freshwater Initiative. He is also a Senior Fellow at the Woods Institute for the Environment. Dr. Gorelick is a US National Academy of Engineering (NAE) member and received Fulbright and Guggenheim Fellowships for research on water and oil resources. He is a Fellow of the American Association for the Advancement of Science (AAAS), American Geophysical Union (AGU) and the Geological Society of America (GSA. Dr. Gorelick has produced over 140 journal papers and 3 books in the areas of water management in underdeveloped regions, hydrogeology, optimal remediation design, hydrogeophysics, ecohydrology, and global oil resources.

 

Subscribe to Natural Resources