Natural Resources

Y2E2
473 Via Ortega
Stanford,  California  94305 

0
1cf4c37a72b8ab44c40568c8cfa7f378.jpg

Dr. Noah Diffenbaugh is the Kara J Foundation Professor and Kimmelman Family Senior Fellow at Stanford University. He studies the climate system, including the processes by which climate change could impact agriculture, water resources, and human health. Dr. Diffenbaugh is currently Editor-in-Chief of the peer-review journal Geophysical Research Letters. He has served as a Lead Author for Working Group II of the Intergovernmental Panel on Climate Change (IPCC), and has provided testimony and scientific expertise to the White House, the Governor of California, and U.S. Congressional offices. Dr. Diffenbaugh is a recipient of the James R. Holton Award from the American Geophysical Union, a CAREER award from the National Science Foundation, and a Terman Fellowship from Stanford University. He has also been recognized as a Kavli Fellow by the U.S. National Academy of Sciences, and as a Google Science Communication Fellow.

Paragraphs

Increased intake of fruits and vegetables (F&V) is recommended for most populations across the globe. However, the current state of global and regional food systems is such that F&V availability, the production required to sustain them, and consumer food choices are all severely deficient to meet this need. Given the critical state of public health and nutrition worldwide, as well as the fragility of the ecological systems and resources on which they rely, there is a great need for research, investment, and innovation in F&V systems to nourish our global population. Here, we review the challenges that must be addressed in order to expand production and consumption of F&V sustainably and on a global scale. At the conclusion of the workshop, the gathered participants drafted the “Aspen/Keystone Declaration” (see below), which announces the formation of a new “Community of Practice,” whose area of work is described in this position paper. The need for this work is based on a series of premises discussed in detail at the workshop and summarized herein. To surmount these challenges, opportunities are presented for growth and innovation in F&V food systems. The paper is organized into five sections based on primary points of intervention in global F&V systems: (1) research and development, (2) information needs to better inform policy & investment, (3) production (farmers, farming practices, and supply), (4) consumption (availability, access, and demand), and (5) sustainable & equitable F&V food systems and supply chains.

All Publications button
1
Publication Type
Working Papers
Publication Date
Journal Publisher
Aspen Global Change Institute
Authors
Rosamond L. Naylor
et al.
News Type
Q&As
Date
Paragraphs

The recently launched Stanford Alumni in Food & Ag group aims to bring together Stanford graduates with a background or interest in food and agriculture issues. Tannis Thorlakson, one of the group’s creators, works as the environmental lead for Driscoll’s in the U.S. and Canada, and recently earned her Ph.D. from Stanford’s E-IPER program. She hopes the group will help alumni stay connected with cutting-edge research and stay up-to-date on news within the food and agriculture space. Thorlakson sat down with FSE to chat about the group and upcoming launch event taking place at the O'Donohue Family Stanford Educational Farm later this month.

Q: What inspired you to create the group and who else was involved?
Thorlakson: It has been exciting to see the increasing enthusiasm for agriculture and food around Stanford's campus during my time there. Between the newly expanded Stanford Farm and the buzz around ag tech, more and more students are interested in careers in food and agriculture. My cofounders Manuel Waenke, Anthony Atlas and I wanted to harness some of this enthusiasm to bring alumni together.

Q: Who is eligible to join?
Thorlakson: At this point, we are focused only on Stanford alumni, but will build collaborations with student groups over time. 

Q: What are your goals or focus areas?
Thorlakson: We have two primary goals; to connect alumni to share insights and opportunities in the food and agriculture space; and to keep alumni connected to campus through events and sharing of cutting-edge Stanford research. 

Q: You have your first event on Oct. 26. What are you hoping to accomplish, who can come, and how can people learn more?
Thorlakson: All alumni and faculty are invited to join. This will be a chance to connect with fellow alumni and learn a bit more about the club. More information here: https://www.stanfordfoodag.com/events.

Q: Anything else you’d like to let others know about?
Thorlakson: We're just getting started, so if you have ideas on how to make this group more relevant to you, please reach out to us at mwaenke@stanford.edu

 

 

 

Hero Image
All News button
1
Paragraphs

Solar radiation management is increasingly considered to be an option for managing global temperatures1,2, yet the economic effects of ameliorating climatic changes by scattering sunlight back to space remain largely unknown3. Although solar radiation management may increase crop yields by reducing heat stress4, the effects of concomitant changes in available sunlight have never been empirically estimated. Here we use the volcanic eruptions that inspired modern solar radiation management proposals as natural experiments to provide the first estimates, to our knowledge, of how the stratospheric sulfate aerosols created by the eruptions of El Chichón and Mount Pinatubo altered the quantity and quality of global sunlight, and how these changes in sunlight affected global crop yields. We find that the sunlight-mediated effect of stratospheric sulfate aerosols on yields is negative for both C4 (maize) and C3 (soy, rice and wheat) crops. Applying our yield model to a solar radiation management scenario based on stratospheric sulfate aerosols, we find that projected mid-twenty-first century damages due to scattering sunlight caused by solar radiation management are roughly equal in magnitude to benefits from cooling. This suggests that solar radiation management—if deployed using stratospheric sulfate aerosols similar to those emitted by the volcanic eruptions it seeks to mimic—would, on net, attenuate little of the global agricultural damage from climate change. Our approach could be extended to study the effects of solar radiation management on other global systems, such as human health or ecosystem function.

All Publications button
1
Publication Type
Journal Articles
Publication Date
Journal Publisher
Nature
Authors
Jonathan Proctor, Solomon Hsiang
Jennifer Burney
Marshall Burke
Wolfram Schlenker

Y2E2 Room 350
473 Via Ortega
Stanford, CA 94305

0
tanutama_headshot2.jpg

Vincent Tanutama is a research data analyst at the Center on Food Security and the Environment, where he supports the work of Marshall Burke on climate’s impact on economic outcomes such as workers' labor productivity and subnational economic output. Vincent's interest in the environment sprouts from investigating the distribution of rent among bureaucrats in their management of forest and oil palm resources in Indonesia, his country of origin. He has worked at the Indonesian Ministry for Economic Development Planning (Bappenas), The Abdul Latif Jameel Poverty Action Lab (JPAL Southeast Asia), Oxford Policy Management (OPM), and the United Nations Economic and Social Commission for Asia and the Pacific (UNESCAP).  He holds a B.A. in Ethics, Politics and Economics from Yale University.

Research Data Analyst
Paragraphs

Rising atmospheric carbon dioxide concentrations are anticipated to decrease the zinc and iron concentrations of crops. The associated disease burden and optimal mitigation strategies remain unknown. We sought to understand where and to what extent increasing carbon dioxide concentrations may increase the global burden of nutritional deficiencies through changes in crop nutrient concentrations, and the effects of potential mitigation strategies.

All Publications button
1
Publication Type
Journal Articles
Publication Date
Journal Publisher
PLOS Medicine
Authors
Christopher Weyant, Margaret L. Brandeau
Marshall Burke
David Lobell
Eran Bendavid, Sanjay Basu
News Type
News
Date
Paragraphs

The rising level of carbon dioxide in the atmosphere means that crops are becoming less nutritious, and that change could lead to higher rates of malnutrition that predispose people to various diseases.

That conclusion comes from an analysis published Tuesday in the journal PLOS Medicine, which also examined how the risk could be alleviated. In the end, cutting emissions, and not public health initiatives, may be the best response, according to the paper's authors.

Research has already shown that crops like wheat and rice produce lower levels of essential nutrients when exposed to higher levels of carbon dioxide, thanks to experiments that artificially increased CO2 concentrations in agricultural fields. While plants grew bigger, they also had lower concentrations of minerals like iron and zinc.

Read the entire story at NPR

All News button
1
Paragraphs

Climate-induced shocks in grain production are a major contributor to global market volatility, which creates uncertainty for cereal farmers and agribusiness and reduces food access for poor consumers when production falls and prices spike. Our study, by combining empirical models of maize production with future warming scenarios, shows that in a warmer climate, maize yields will decrease and become more variable. Because just a few countries dominate global maize production and trade, simultaneous production shocks in these countries can have tremendous impacts on global markets. We show that such synchronous shocks are rare now but will become much more likely if the climate continues to warm. Our results underscore the need for continued investments in breeding for heat tolerance.

All Publications button
1
Publication Type
Journal Articles
Publication Date
Journal Publisher
Proceedings of the National Academy of Sciences
Authors
Michelle Tigchelaar, David S. Battisti
Rosamond L. Naylor
Rosamond L. Naylor
Deepak K. Ray
Paragraphs

Aquaculture in many countries around the world has become the biggest source of seafood for human consumption. While it alleviates the pressure on wild capture fisheries, the long-term impacts of large-scale, intensive aquaculture on natural coastal systems need to be better understood. In particular, aquaculture may alter habitat and exceed the carrying capacity of coastal marine ecosystems. In this paper, we develop a high-resolution numerical model for Sanggou Bay, one of the largest kelp and shellfish aquaculture sites in Northern China, to investigate the effects of aquaculture on nutrient transport and residence time in the bay. Drag from aquaculture is parameterized for surface infrastructure, kelp canopies, and bivalve cages. A model for dissolved inorganic nitrogen (DIN) includes transport, vertical turbulent mixing, sediment and bivalve sources, and a sink due to kelp uptake. Test cases show that, due to drag from the dense aquaculture and thus a reduction of horizontal transport, kelp production is limited because DIN from the Yellow Sea is consumed before reaching the interior of the kelp farms. Aquaculture drag also causes an increase in the nutrient residence time from an average of 5 to 10 days in the middle of Sanggou Bay, and from 25 to 40 days in the shallow inner bay. Low exchange rates and a lack of DIN uptake by kelp make these regions more susceptible to phytoplankton blooms due to high nutrient retention. The risk is further increased when DIN concentrations rise due to river inflows.

All Publications button
1
Publication Type
Journal Articles
Publication Date
Journal Publisher
Environmental Fluid Mechanics
Authors
Bing Wang
Ling Cao
Fiorenza Micheli
Rosamond L. Naylor
Oliver B. Fringer
Subscribe to Natural Resources