Innovation Needed to Meet Global Food Security Challenges
Join us for a talk with agricultural and development economist Christopher B. Barrett, this quarter’s visiting scholar with the Center on Food Security and the Environment. Barrett is the Stephen B. and Janice G. Ashley Professor of Applied Economics and Management and an International Professor of Agriculture with Cornell’s Dyson School of Applied Economics and Management.
Professor Barrett will discuss food systems advances over the past 50 years that have promoted unprecedented reduction globally in poverty and hunger, averted considerable deforestation, and broadly improved lives, livelihoods and environments in much of the world. He’ll share perspectives on the reasons why, despite those advances, those systems increasingly fail large communities in environmental, health, and increasingly in economic terms and appear ill-suited to cope with inevitable further changes in climate, incomes, and population over the coming 50 years. Barrett will explore the new generation of innovations underway that must overcome a host of scientific and socioeconomic obstacles.
Also a Professor of Economics in the Department of Economics, Barrett is co-editor in chief of the journal Food Policy, is a faculty fellow with David R. Atkinson Center for a Sustainable Future and serves as the director of the Stimulating Agriculture and Rural Transformation (StART) Initiative housed at the Cornell International Institute for Food, Agriculture and Development.
The Future of Food from the Sea
As the global population and people’s incomes rise, the demand for ocean-derived food will continue to grow. At the same time, hunger and malnutrition continues to be a challenge in many countries, particularly in rural or developing areas. Looking to the ocean as a source of protein produced using low-carbon methodologies will be critical for food security, nutrition and economic stability, especially in coastal countries where hunger and malnutrition are a challenge. Yet these advances in ocean production can only be achieved with a concurrent focus on addressing threats to ocean health, such as climate change and overfishing.
The important but weakening maize yield benefit of grain filling prolongation in the US Midwest
A better understanding of recent crop yield trends is necessary for improving the yield and maintaining food security. Several possible mechanisms have been investigated recently in order to explain the steady growth in maize yield over the US Corn‐Belt, but a substantial fraction of the increasing trend remains elusive. In this study, trends in grain filling period (GFP) were identified and their relations with maize yield increase were further analyzed. Using satellite data from 2000 to 2015, an average lengthening of GFP of 0.37 days per year was found over the region, which probably results from variety renewal. Statistical analysis suggests that longer GFP accounted for roughly one‐quarter (23%) of the yield increase trend by promoting kernel dry matter accumulation, yet had less yield benefit in hotter counties. Both official survey data and crop model simulations estimated a similar contribution of GFP trend to yield. If growing degree days that determines the GFP continues to prolong at the current rate for the next 50 years, yield reduction will be lessened with 25% and 18% longer GFP under Representative Concentration Pathway 2.6 (RCP 2.6) and RCP 6.0, respectively. However, this level of progress is insufficient to offset yield losses in future climates, because drought and heat stress during the GFP will become more prevalent and severe. This study highlights the need to devise multiple effective adaptation strategies to withstand the upcoming challenges in food security.
Hierarchical Modeling of Seed Variety Yields and Decision Making for Future Planting Plans
Eradicating hunger and malnutrition is a key development goal of the twenty first century. This paper addresses the problem of optimally identifying seed varieties to reliably increase crop yield within a risk-sensitive decision making framework. Specifically, a novel hierarchical machine learning mechanism for predicting crop yield (the yield of different seed varieties of the same crop) is introduced. This prediction mechanism is then integrated with a weather forecasting model and three different approaches for decision making under uncertainty to select seed varieties for planting so as to balance yield maximization and risk. The model was applied to the problem of soybean variety selection given in the 2016 Syngenta Crop Challenge. The prediction model achieved a median absolute error of 235 kg/ha and thus provides good estimates for input into the decision models. The decision models identified the selection of soybean varieties that appropriately balance yield and risk as a function of the farmer’s risk aversion level. More generally, the models can support farmers in decision making about which seed varieties to plant.
Food system failures in our age of abundance
Twelve-year-old Lena is growing up poor and malnourished on Chicago’s West Side. She buys Blue Juice and Hot Chips from the corner store on her way to school. She and her classmates can afford the flavoured sugar water and salty starch, but this cheap “food” that fills up her stomach provides no nutritional value.
Lena is one of over 20 million Americans living in food deserts, places without access to a full-service grocery store within two miles. Yet while Lena buys her Hot Chips, an affluent family nearby uses an online retail platform to order their weekly delivery of fresh, nutritious food – at prices that Lena and her family can’t afford. Despite a surge of technology innovations in food retail, Lena and her family represent a growing number of underserved customers around the world.
Model vs. experiment to predict crop losses—Response
Our Report draws attention to a complex but understudied issue: How will climate warming alter losses of major food crops to insect pests? Because empirical evidence on plant-insect-climate interactions is scarce and geographically localized, we developed a physiologically based model that incorporates strong and well-established effects of temperature on metabolic rates and on population growth rates. We acknowledged that other factors are involved, but the ones we analyzed are general, robust, and global (1–3).
Parmesan and colleagues argue that our model is overly simplistic and that any general model is premature. They are concerned that our model does not incorporate admittedly idiosyncratic and geographically localized aspects of plant-insect interactions. Some local effects, such as evidence that warmer winters will harm some insects but not others, were in fact evaluated in our sensitivity analyses and shown to be minor (see the Report's Supplementary Materials). Other phenomena, such as plant defenses that benefit some insects and threaten others, are relevant but are neither global nor directional. Furthermore, because Parmesan et al. present no evidence that such idiosyncratic and localized interactions will outweigh the cardinal and universally strong impacts of temperature on populations and on metabolic rates (1–3), their conclusion is subjective.
We agree with Parmesan and colleagues that the question of future crop losses is important and needs further study, that targeted experimental data are needed (as we wrote in our Report), and that our estimates are likely to be conservative (as we concluded, but for reasons different from theirs). However, we strongly disagree with their recommendation to give research priority to gathering localized experimental data. That strategy will only induce a substantial time lag before future crop losses can be addressed.
We draw a lesson from models projecting future climates. Those models lack the “complexity and idiosyncratic nature” of many climate processes, but by building from a few robust principles, they successfully capture the essence of climate patterns and trends (4). Similarly, we hold that the most expeditious and effective way to anticipate crop losses is to develop well-evidenced ecological models and use them to help guide targeted experimental approaches, which can subsequently guide revised ecological models. Experiments and models should be complementary, not sequential.
Agricultural Policies in the Caribbean: A Regional Analysis
This publication summarizes the agricultural policy analyses conducted in nine Caribbean countries (Suriname, Guyana, Haiti, Dominican Republic, Jamaica, Belize, Barbados, The Bahamas, and Trinidad and Tobago) in the framework of the IDB’s Agrimonitor initiative. The document discusses how agricultural policies affect producers and consumers as well as how the limited funding for agricultural services, such as research and infrastructure, could limit the ability of Caribbean farmers to compete effectively in global markets. The analyses presented are therefore meant to contribute to the Caribbean’s regional dialogue for the design of more effective agricultural policies, which will be able to strengthen the sector and improve the lives of people in the region.
Handbook of International Food and Agricultural Policies
Volume I covers Farm and Rural Development policies of developed and developing countries. The volume contains 20 country chapters together with a concluding comprehensive synthesis of lessons to be drawn from the experiences of the individual countries.
Volume II examines the experience of countries with food policies, including those dealing with food safety and quality and the responsibility for food security in developing countries. The chapters address issues such as obesity, nutritional supplements, organic foods, food assistance programs, biotech food acceptance, and the place of private standards.
Volume III describes and explains the international trade dimension of farm and food policies — both at the bilateral and regional level — and also the multilateral rules that influence and constrain individual governments. The volume also looks at the steps that countries are together taking to meet the needs of developing and low-income countries.
The volumes are of value to students and researchers interested in economic development, agricultural markets and food systems. Policy-makers and professionals involved in monitoring and regulating agricultural and food markets would also find the volumes useful in their practical work. This three-volume set is also a suitable source for the general public interested in how their food system is influenced by government policies.
Readership: Students and researchers who are interested in economic development, agricultural markets and food systems; and policy-makers and professionals involved in monitoring and regulating agricultural and food markets.
Sustainable and Equitable Increases in Fruit and Vegetable Productivity and Consumption are Needed to Achieve Global Nutrition Security
Increased intake of fruits and vegetables (F&V) is recommended for most populations across the globe. However, the current state of global and regional food systems is such that F&V availability, the production required to sustain them, and consumer food choices are all severely deficient to meet this need. Given the critical state of public health and nutrition worldwide, as well as the fragility of the ecological systems and resources on which they rely, there is a great need for research, investment, and innovation in F&V systems to nourish our global population. Here, we review the challenges that must be addressed in order to expand production and consumption of F&V sustainably and on a global scale. At the conclusion of the workshop, the gathered participants drafted the “Aspen/Keystone Declaration” (see below), which announces the formation of a new “Community of Practice,” whose area of work is described in this position paper. The need for this work is based on a series of premises discussed in detail at the workshop and summarized herein. To surmount these challenges, opportunities are presented for growth and innovation in F&V food systems. The paper is organized into five sections based on primary points of intervention in global F&V systems: (1) research and development, (2) information needs to better inform policy & investment, (3) production (farmers, farming practices, and supply), (4) consumption (availability, access, and demand), and (5) sustainable & equitable F&V food systems and supply chains.