Aquaculture
All Publications button
1
Publication Type
Journal Articles
Publication Date
Subtitle

The sustainability of aquaculture has been debated intensely since 2000, when a review on the net contribution of aquaculture to world fish supplies was published in Nature. This paper reviews the developments in global aquaculture from 1997 to 2017, incorporating all industry sub-sectors and highlighting the integration of aquaculture in the global food system. Inland aquaculture—especially in Asia—has contributed the most to global production volumes and food security. Major gains have also occurred in aquaculture feed efficiency and fish nutrition, lowering the fish-in–fish-out ratio for all fed species, although the dependence on marine ingredients persists and reliance on terrestrial ingredients has increased. The culture of both molluscs and seaweed is increasingly recognized for its ecosystem services; however, the quantification, valuation, and market development of these services remain rare. The potential for molluscs and seaweed to support global nutritional security is underexploited. Management of pathogens, parasites, and pests remains a sustainability challenge industry-wide, and the effects of climate change on aquaculture remain uncertain and difficult to validate. Pressure on the aquaculture industry to embrace comprehensive sustainability measures during this 20-year period have improved the governance, technology, siting, and management in many cases.

Journal Publisher
Nature
Authors
Rosamond L. Naylor
News Type
News
Date
Paragraphs

The Ecological Society of America (ESA) has named William Wrigley Professor and FSE Founding Director ROSAMOND NAYLOR as one of its 2019 Fellows. The lifetime appointment recognizes Naylor for “designing ecologically and economically sound practices that protect native species and enhance global food security in marine and terrestrial ecosystems,” according to the ESA’s April 4th  announcement.  

Naylor, a professor with the School of Earth, Energy & Environmental Sciences, also is a senior fellow at the Stanford Woods Institute for the Environment and the Freeman Spogli Institute for International Studies.

ESA fellows are recognized for “outstanding contributions to a wide range of fields served by ESA, including, but not restricted to, those that advance or apply ecological knowledge in academics, government, nonprofit organizations and the broader society” and are elected for life. As part of the fellowship  

 “I’m particularly honored because I have been trained formally as an economist, but my most creative and impactful work has been done in collaboration with ecologists," Naylor said. "My colleagues in ecology have inspired me to ask really interesting questions at the interface of global food systems and natural ecosystems, and I have learned a great deal in the process.”

All News button
1
Authors
Nicole Kravec, Stanford Center for Ocean Solutions
News Type
News
Date
Paragraphs
Stanford’s Center for Ocean Solutions and Center on Food Security and the Environment, together with Springer-Nature, are hosting a workshop focused on building a research agenda that, for the first time, analyzes the role of oceans within the context of global food systems.
 
Massive changes in the global food sector over the next few decades – driven by climate change and other environmental stresses, growing population and income, advances in technology, and shifts in policies and trade patterns – will have profound implications for the oceans and vice versa. While there is a large community of researchers addressing challenges in food policy and agriculture and a similar community in oceans and fisheries, there is very little interaction between them. This workshop addresses a pressing need to foster more interaction among these communities, to build a research agenda that illuminates the many interconnections among food and the oceans, and to inform action to meet these challenges.
 
“Stanford is in a perfect position to take the lead in developing this new area of research and outreach, with its strong expertise in terrestrial food systems, global food security, and the oceans,” claims Roz Naylor, Professor of Earth System Science, founding Director of the Center on Food Security and the Environment, and co-organizer of the workshop.
 
This event brings together diverse leaders across academia, business, policy, and government. Together participants will analyze the role of the oceans within a global food systems context, highlighting issues related to food security, equity, poverty alleviation, marine ecosystems, and environmental change. The aim is to define and develop this emerging field, as researchers and stakeholders explore cutting edge ideas and identify emerging trends and challenges that can inform ongoing policy discussions.
 

“This is a unique opportunity to build a new and vibrant community, bringing together leading researchers in oceans, fisheries, food, and agriculture from around the world," explained COS co-director Jim Leape. "We're coming together to ask the key questions needed to identify emerging themes and solutions, in lockstep with those who will put these findings into practice," added COS co-director Fiorenza Micheli. "As the world's demand for food continues to grow, we will increasingly need to understand and act on the critical role of the oceans to meet these challenges."

Jim Leape is also the William and Eva Price Fellow at the Stanford Woods Institute for the Environment. Fiorenza Micheli is also the David and Lucile Packard Professor in Marine Sciences at Stanford's Hopkins Marine Station and senior fellow at the Woods Institute. Read more about the Stanford Center for Ocean Solutions.

 

All News button
1
Paragraphs

Globally, demand for food animal products is rising. At the same time, we face mounting, related pressures including limited natural resources, negative environmental externalities, climate disruption, and population growth. Governments and other stakeholders are seeking strategies to boost food production efficiency and food system resiliency, and aquaculture (farmed seafood) is commonly viewed as having a major role in improving global food security based on longstanding measures of animal production efficiency. The most widely used measurement is called the 'feed conversion ratio' (FCR), which is the weight of feed administered over the lifetime of an animal divided by weight gained. By this measure, fed aquaculture and chickens are similarly efficient at converting feed into animal biomass, and both are more efficient compared to pigs and cattle. FCR does not account for differences in feed content, edible portion of an animal, or nutritional quality of the final product. Given these limitations, we searched the literature for alternative efficiency measures and identified 'nutrient retention', which can be used to compare protein and calories in feed (inputs) and edible portions of animals (outputs). Protein and calorie retention have not been calculated for most aquaculture species. Focusing on commercial production, we collected data on feed composition, feed conversion ratios, edible portions (i.e. yield), and nutritional content of edible flesh for nine aquatic and three terrestrial farmed animal species. We estimate that 19% of protein and 10% of calories in feed for aquatic species are ultimately made available in the human food supply, with significant variation between species. Comparing all terrestrial and aquatic animals in the study, chickens are most efficient using these measures, followed by Atlantic salmon. Despite lower FCRs in aquaculture, protein and calorie retention for aquaculture production is comparable to livestock production. This is, in part, due to farmed fish and shrimp requiring higher levels of protein and calories in feed compared to chickens, pigs, and cattle. Strategies to address global food security should consider these alternative efficiency measures.

All Publications button
1
Publication Type
Journal Articles
Publication Date
Journal Publisher
Environmental Research Letters, Volume 13, Number 2
Authors
Jillian Fry, Nicholas Mailloux, David Love, Michael Milli
Ling Cao
Paragraphs

China’s 13th Five-Year Plan, launched in March 2016, provides a sound policy platform for the protection of marine ecosystems and the restoration of capture fisheries within China’s exclusive economic zone. What distinguishes China among many other countries striving for marine fisheries reform is its size—accounting for almost one-fifth of global catch volume—and the unique cultural context of its economic and resource management. In this paper, we trace the history of Chinese government priorities, policies, and outcomes related to marine fisheries since the 1978 Economic Reform, and examine how the current leadership’s agenda for “ecological civilization” could successfully transform marine resource management in the coming years. We show how China, like many other countries, has experienced a decline in the average trophic level of its capture fisheries during the past few decades, and how its policy design, implementation, and enforcement have influenced the status of its wild fish stocks. To reverse the trend in declining fish stocks, the government is introducing a series of new programs for sustainable fisheries and aquaculture, with greater traceability and accountability in marine resource management and area controls on coastal development. As impressive as these new plans are on paper, we conclude that serious institutional reforms will be needed to achieve a true paradigm shift in marine fisheries management in China. In particular, we recommend new institutions for science-based fisheries management, secure fishing access, policy consistency across provinces, educational programs for fisheries managers, and increasing public access to scientific data.

All Publications button
1
Publication Type
Journal Articles
Publication Date
Journal Publisher
PNAS
Authors
Ling Cao
Rosamond L. Naylor
Shuanglin Dongd, Arthur Hansone, Bo Huangf, Duncan Leadbitterg, David C. Littleh, Ellen K. Pikitchi, Yongsong Qiuj, Yvonne Sadovy de Mitchesonk, Ussif Rashid Sumailal, Meryl Williamsm, Guifang Xuen, Yimin Yeo, Wenbo Zhangp, Yingqi Zhouq, Ping Zhuangr
Subscribe to Aquaculture