Agriculture policy
Paragraphs

Recent work has shown that current bio-energy policy directives may have harmful, indirect consequences, affecting both food security and the global climate system. An additional unintended but direct effect of large-scale biofuel production is the impact on local and regional climate resulting from changes in the energy and moisture balance of the surface upon conversion to biofuel crops. Using the latest version of the WRF modeling system we conducted twenty-four, midsummer, continental-wide, sensitivity experiments by imposing realistic biophysical parameter limits appropriate for bio-energy crops in the Corn Belt of the United States. In the absence of strain/crop-specific parameterizations, a primary goal of this work was to isolate the maximum regional climate impact, for a trio of individual July months, due to land-use change resulting from bio-energy crops and to identify relative importance of each biophysical parameter in terms of its individual effect. Maximum, local changes in 2 m temperature of the order of 1C occur for the full breadth of albedo (ALB), minimum canopy resistance (RCMIN) and rooting depth (ROOT) specifications, while the regionally (105W-75W and 35N-50N) and monthly averaged response of 2 m temperature was most pronounced for the ALB and RCMIN experiments, exceeding 0.2C. The full range of the albedo variability associated with biofuel crops may be sufficient to drive regional changes in summertime rainfall. Individual parameter effects on 2 m temperature are additive, highlight the cooling contribution of higher leaf area index (LAI) and ROOT for perennial grasses (e.g., Miscanthus) versus annual crops (e.g., maize), and underscore the necessity of improving location- and vegetation-specific representation of RCMIN and ALB.

All Publications button
1
Publication Type
Journal Articles
Publication Date
Journal Publisher
Geophysical Research Letters
Authors
Matei Georgescu
David Lobell
Christopher B. Field

Biofuel development contributes most effectively to rural income growth when you can have vertical integration. People all along the value chain have to be making money. The emerging connections between agriculture and energy markets are complex, but can be advantageous if handled carefully - Siwa Msangi

Paragraphs

Last May's passage of the 2008 Farm Bill raises the stakes for biofuel sustainability:
A substantial subsidy for the production of cellulosic ethanol starts the United States again down a path with uncertain environmental consequences. This time, however, the subsidy is for both the refiners ($1.01 per gallon) and the growers ($45 per ton of biomass), which will rapidly accelerate adoption and place hard-to-manage pressures on efforts to design and implement sustainable production practices-as will a 2007 legislative mandate for 16 billion gallons of cellulosic ethanol per year by 2022. Similar directives elsewhere, e.g., the European.

Union's mandate that 10% of all transport fuel in Europe be from renewable sources by
2020, make this a global issue. The European Union's current reconsideration of this target
places even more emphasis on cellulosic feedstocks. The need for knowledge- and science-based policy is urgent.

All Publications button
1
Publication Type
Journal Articles
Publication Date
Journal Publisher
Science
Authors
Holly Gibbs
Paragraphs

During the eighteen months after January 2007, cereal prices doubled, setting off a world food crisis. In the United States, rising food prices have been a pocketbook annoyance. Most Americans can opt to buy lower-priced sources of calories and proteins and eat out less frequently. But for nearly half of the world’s population—the 2.5 billion people who live on less than $2 per day—rising costs mean fewer meals, smaller portions, stunted children, and higher infant mortality rates. The price explosion has produced, in short, a crisis of food security, defined by the Food and Agriculture Organization (FAO) as the physical and economic access to the food necessary for a healthy and productive life. And it has meant a sharp setback to decades-long efforts to reduce poverty in poor countries.

The current situation is quite unlike the food crises of 1966 and 1973. It is not the result of a significant drop in food supply caused by bad weather, pests, or policy changes in the former Soviet Union. Rather, it is fundamentally a demand-driven story of “success.” Rising incomes, especially in China, India, Indonesia, and Brazil, have increased demand for diversified diets that include more meat and vegetable oils. Against this background of growing income and demand, increased global consumption of biofuels and the American and European quest for energy self-sufficiency have added further strains to the agricultural system. At the same time, neglected investments in productivity-improving agricultural technology—along with a weak U.S. dollar, excessive speculation, and misguided government policies in both developed and developing countries—have exacerbated the situation. Climate change also looms ominously over the entire global food system.

In short, an array of agricultural, economic, and political connections among commodities and across nations are now working together to the detriment of the world’s food-insecure people...

All Publications button
1
Publication Type
Journal Articles
Publication Date
Journal Publisher
Boston Review
Authors
Rosamond L. Naylor
Paragraphs

Climate change is projected to have adverse impacts on public health. Cobenefits may be possible from more upstream mitigation of greenhouse gases causing climate change. To help measure such cobenefits alongside averted disease-specific risks, a health impact assessment (HIA) framework can more comprehensively serve as a decision support tool. HIA also considers health equity, clearly part of the climate change problem. New choices for energy must be made carefully considering such effects as additional pressure on the world's forests through large-scale expansion of soybean and oil palm plantations, leading to forest clearing, biodiversity loss and disease emergence, expulsion of subsistence farmers, and potential increases in food prices and emissions of carbon dioxide to the atmosphere. Investigators must consider the full range of policy options, supported by more comprehensive, flexible, and transparent assessment methods.

All Publications button
1
Publication Type
Journal Articles
Publication Date
Journal Publisher
Annual Reviews of Public Health
Authors
Holly Gibbs
Paragraphs

The integration of the agricultural and energy sectors caused by rapid growth in the biofuels market signals a new era in food policy and sustainable development. For the first time in decades, agricultural commodity markets could experience a sustained increase in prices, breaking the long-term price decline that has benefited food consumers worldwide. Whether this transition occurs, and how it will affect global hunger and poverty, remain to be seen. Will food markets begin to track the volatile energy market in terms of price and availability? Will changes in agricultural commodity markets benefit net food producers and raise farm incomes in poor countries? How will biofuels-induced changes in agricultural commodity markets affect net consumers of food? At risk are over 800 million food-insecure people, mostly in rural areas and dependant to some extent on agriculture for incomes, who live on less than $1 per day and spend the majority of their incomes on food. An additional 2 to 2.5 billion people living on $1 to $2 per day are also at risk, as rising commodity prices could pull them swiftly into a food-insecure state.

All Publications button
1
Publication Type
Journal Articles
Publication Date
Journal Publisher
Environment
Authors
Rosamond L. Naylor
Marshall Burke
Scott Rozelle
Kenneth Cassman

Most reduction fisheries that produce fishmeal and fish oil have already reached or exceeded sustainable catch levels and will be placed under further pressure as the aquaculture industry grows. At the same time that research into alternative sources of nutrition for piscivorous aquaculture species is progressing, several laws and regulations are taking shape that address the issue of aquaculture feed practices, including the U.S. National Offshore Aquaculture Act (H.R. 2010, S. 1609), the California Sustainable Oceans Act (SB 201), and the development of organic aquaculture standards by the National Organic Standards Board (NOSB). Other nations with expanding aquaculture industries are also beginning to take notice of this issue and are investigating alternative feed sources.

At this pivotal time, the Stanford meeting will bring together a small group of forward-thinking researchers, environmental non-profits, aquaculture producers, feed developers, and others who are striving toward sustainable feed solutions. The goal is to develop recommendations and a guiding direction for achieving sustainable feed inputs, incorporating current science, economics, and policy. The meeting seeks to:

  • Analyze current and future feed demands in the marine aquaculture sector. What percentage of fishmeal and fish oil inclusion is typical in feeds, and how much can that percentage be reduced?
  • Assess the role of conventional fishmeal and fish oil and alternative sources of nutrition, such as krill, algae, other microbes, terrestrial plants, by-catch, and seafood and poultry processing wastes, both now and in the future. What are the prospects for continued use of wild-caught fish and how can these conventional feed sources be used more responsibly? What are the environmental impacts of each of the resources? What is the state of scientific knowledge, development, and availability of alternatives? How will market dynamics impact the transition from fishmeal and fish oil to alternative proteins and oils?
  • Identify research needs and areas of high promise. Discuss how to encourage the research, development, and use of sustainable, alternative feed ingredients in aquaculture.

We hope the meeting will facilitate the cross-fertilization of ideas on sustainable feeds from people in different sectors and begin to provide some clarity and direction useful to policymakers. Although many experts have acknowledged the problem of increasing feed demands, and while alternative feed sources are a growing research field, there are few specific recommendations on how to achieve sustainable feed inputs. From the discussion at this workshop, we intend to produce specific recommendations to guide legislation and regulation on feeds, with the goal of improving the sustainability of aquaculture feed practices.

FSE - Stanford University

Conferences
Paragraphs

Access to an adequate energy supply at reasonable cost is crucial for sustained economic growth. Unfortunately, oil prices and the need to import from politically unstable countries lowers the reliability of the US energy supply and hinders economic development. Although biofuels have been identified as an important component of the national strategy to decrease US dependence on foreign oil, the ability to sustain a rapid expansion of biofuel production capacity raises new research and policy issues. This document seeks to identify the most critical of these issues to help inform the policy development process. The goal is to enhance the long-term economic and environmental viability of the biofuel industry and its positive impact on agriculture, rural communities, and national security.

All Publications button
1
Publication Type
Policy Briefs
Publication Date
Journal Publisher
CAST Report
Authors
Kenneth Cassman

Energy and Environment Building
473 Via Ortega
Stanford CA 94305

(650) 721-6207
0
Professor, Earth System Science
Senior Fellow at the Freeman Spogli Institute for International Studies
Senior Fellow at the Stanford Woods Institute for the Environment
Senior Fellow at the Stanford Institute for Economic Policy Research (SIEPR)
Affiliate, Precourt Institute of Energy
shg_ff1a1284.jpg
PhD

David Lobell is the Benjamin M. Page Professor at Stanford University in the Department of Earth System Science and the Gloria and Richard Kushel Director of the Center on Food Security and the Environment. He is also the William Wrigley Senior Fellow at the Stanford Woods Institute for the Environment, and a senior fellow at the Freeman Spogli Institute for International Studies (FSI) and the Stanford Institute for Economic Policy and Research (SIEPR).

Lobell's research focuses on agriculture and food security, specifically on generating and using unique datasets to study rural areas throughout the world. His early research focused on climate change risks and adaptations in cropping systems, and he served on the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report as lead author for the food chapter and core writing team member for the Summary for Policymakers. More recent work has developed new techniques to measure progress on sustainable development goals and study the impacts of climate-smart practices in agriculture. His work has been recognized with various awards, including the Macelwane Medal from the American Geophysical Union (2010), a Macarthur Fellowship (2013), the National Academy of Sciences Prize in Food and Agriculture Sciences (2022) and election to the National Academy of Sciences (2023).

Prior to his Stanford appointment, Lobell was a Lawrence Post-doctoral Fellow at Lawrence Livermore National Laboratory. He holds a PhD in Geological and Environmental Sciences from Stanford University and a Sc.B. in Applied Mathematics from Brown University.

CV
Subscribe to Agriculture policy